Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0364820100460040383
Korean Journal of Microbiology
2010 Volume.46 No. 4 p.383 ~ p.388
Strain Development for the Over-production of Alkaline Protease from Vibrio metschnikovii by Molecular Evolution
Shin Yong-Uk

Lee Gwa-Soo
Jo Jae-Hyung
Lee Hyune-Hwan
Abstract
Alkaline protease-overproducing strains of Vibrio metschnikovii were developed by using the molecular evolution from the classical mutants V. metschnikovii L12-23, N4-8, and KS1. Each vapK (Vibrio alkaline protease K) was obtained from the genomic DNAs of mutants by PCR to carry out the DNA shuffling. The modified vapK-1 obtained by DNA shuffling was used again as a template for the error-prone PCR to make the vapK-2. Both genes were cloned in the plasmid pKF3 to construct the recombinant plasmids which have one or two copies of the modified genes. The recombinant plasmids were back-transformed to V. metschnikovii KS1 to construct recombinant V. metschnikovii that expresses the alkaline protease. About 3.9-fold more protease activity was measured in the strain which has the plasmid containing two copies of vapK-2 when compared to strain KS1. When compared to wild type V. metschnikovii RH530, 43-fold more activity was achieved. Comparison of amino acids among vapK, vapK-1, and vapK-2 revealed that the active sites was highly conserved and not changed. However, many amino acids except the active sites were changed. These results suggested that the changes in amino acids might play an important role in the increase of protease activity by allowing the easy access of substrate to active sites of the protease. The fermentation of alkaline protease from the V. metschnikovii KS1 harboring the plasmid that contains two copies of vapK-1 showed the possibility of this strain to be used as industrial producer.
KEYWORD
alkaline protease, DNA shuffling, error-prone PCR, molecular evolution, Vibrio metschnikovii
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)